PERIODIC PROBLEM WITH QUASILINEAR DIFFERENTIAL OPERATOR AND WEAK SINGULARITY

Alberto Cabada, Alexander Lomtatidze and Milan Tvrdý

(preprint)

167
2006
Abstract. We study the singular periodic boundary value problem of the form
\[(|u'|^p - 2 u')' = f(t, u), \quad u(0) = u(T), \quad u'(0) = u'(T),\]
where \(p \in (1, \infty)\) and \(f \in \text{Car}([0, T] \times (0, \infty))\) can have a repulsive space singularity at \(x = 0\). On the contrary to previous results by Mawhin and Jebelean, Liu Bing and Rachůnková and Tvrdý, we need not to assume any strong force conditions. Our main existence results rely on a new antimaximum principle for periodic quasilinear periodic problem, which has an independent meaning.

Keywords. Singular problem, periodic problem, Dirichlet problem, \(p\)-Laplacian, repulsive singularity, weak singularity, lower and upper functions, antimaximum principle, quasilinear equation

1. Introduction

This paper deals with singular periodic problems of the form
\[
\begin{align*}
(\phi_p(u'))' &= f(t, u), \\
u(0) &= u(T), \quad u'(0) = u'(T),
\end{align*}
\]
where
\[
0 < T < \infty, \quad p \in (1, \infty), \quad \phi_p(y) = |y|^{p-2} y \quad \text{for} \ y \in \mathbb{R}
\]
and f satisfies the Carathéodory conditions on $[0, T] \times (0, \infty)$, i.e. f has the following properties: (i) for each $x \in (0, \infty)$ the function $f(., x)$ is measurable on $[0, T]$; (ii) for almost every $t \in [0, T]$ the function $f(t, .)$ is continuous on $(0, \infty)$; (iii) for each compact set $K \subset (0, \infty)$ the function $m_K(t) = \sup_{x \in K} |f(t, x)|$ is Lebesgue integrable on $[0, T]$.

Second order nonlinear differential equations or systems with singularities appear naturally in the description of particles submitted to Newtonian type forces or to forces caused by compressed gases, see e.g. [12], [15] or [16]. The mathematical interest in periodic singular problems increased when the paper [22] by Lazer and Solimini appeared in 1987. Motivated by the model equation $u'' = au^{-\alpha} + e(t)$ with $\alpha > 0, a \neq 0$ and e integrable on $[0, T]$, they investigated the existence of positive solutions to the Duffing equation $u'' = g(u) + e(t)$ using topological arguments and the lower and upper functions method. The restoring force g was allowed to have an attractive singularity or a strong repulsive singularity at origin. The results by Lazer and Solimini have been generalized or extended e.g. by Habets and Sanchez [18], Mawhin [27], del Pino, Manásevich and Montero [10], Omari and Ye [29], Zhang [42] and [44], Ge and Mawhin [17], Rachůnková and Tvrdoš [32], or Rachůnková, Tvrdoš and Vrkoč [37]. All of these papers, when dealing with the repulsive singularity, supposed that the strong force condition is satisfied. For the case of the weak singularity, first results were delivered by Rachůnková, Tvrdoš and Vrkoč in [36]. Further results were delivered later also by Bonheure and De Coster [2] and Torres [39].

Regular periodic problems with $\phi-$ or $p-$Laplacian on the left hand side were considered by several authors, see e.g. del Pino, Manásevich and Murúa [11] or Yan [41]. General existence principles for the regular vector problem, based on the homotopy to the averaged nonlinearity, were presented by Manásevich and Mawhin in [25] (see also Mawhin [28]).

In the well-ordered case, the lower/upper functions method was extended to periodic problems with a $\phi-$Laplacian operator on the left hand side by Cabada and Pouso in [5], Jiang and Wang in [21] and Staněk in [38]. The general existence principle valid also when lower/upper functions are non-ordered was given by Rachůnková and Tvrdoš in [34] and, for the case when impulses are admitted, also in [33].

The singular periodic problem for the Liénard type equation

$$
(\lvert u'\rvert^{p-2} u')' + h(u) u' = g(u) + e(t)
$$

with g having either an attractive singularity or a strong repulsive singularity at $x = 0$ was treated by Liu [24], Jebelean and Mawhin [19] and [20] and Rachůnková and Tvrdoš [35].

Let us recall that a function g is said to have an attractive singularity at $x = 0$ if

$$
\liminf_{x \to 0^+} g(x) = -\infty.
$$
Alternatively, we say that g has a repulsive singularity at the origin if
\begin{equation}
\limsup_{x \to 0^+} g(x) = +\infty
\end{equation}
and g has a strong repulsive singularity at the origin if
\begin{equation}
\lim_{x \to 0^+} \int_x^1 g(s) \, ds = +\infty.
\end{equation}

For a more detailed survey of the recent development we refer to [31, Section 5].

The main goal of this paper is a new existence result, Theorem 4.4, for problem (1.1), (1.2). As in [36, Theorem 2.5] (see also [31, Theorem 5.26]), where the classical case $p = 2$ was treated, we need not to assume that f satisfies any strong force condition. Our main tools are the lower and upper function method and a generalization of a classical antimaximum principle to the quasilinear periodic problem
\begin{equation}
(\phi_p(u'))' + \lambda \phi_p(u) = e(t), \quad u(0) = u(T), \quad u'(0) = u'(T)
\end{equation}
established below in Theorem 3.2.

Our main result applies, in particular, to the Duffing type model problem
\begin{equation}
(\phi_p(u'))' + \mu_p u^{p-1} = a u^{-\alpha} + e(t), \quad u(0) = u(T), \quad u'(0) = u'(T),
\end{equation}
where $a > 0$, $\alpha > 0$, $\mu_p = (\pi_p/T)^p$ is the least eigenvalue of a homogeneous Dirichlet problem related to (1.7) and $e \in L_1[0,T]$. In particular, we get that problem (1.8) has a positive solution if $\inf \text{ess}_{t \in [0,T]} e(t) > 0$. It is worth mentioning that for $\alpha \in (0,1)$ the function $g(x) = a x^{-\alpha}$ does not satisfy the strong force condition (1.6).

\section{Preliminaries}

As usual, for an arbitrary subinterval I of \mathbb{R} we denote by $C(I)$ the set of functions $x : I \to \mathbb{R}$ which are continuous on I, $C^1[0,T]$ stands for the set of functions $x \in C[0,T]$ with the first derivative continuous on $[0,T]$. Further, $L_1[0,T]$ is the set of functions $x : [0,T] \to \mathbb{R}$ which are measurable and Lebesgue integrable on $[0,T]$. $AC[0,T]$ is the set of functions absolutely continuous on $[0,T]$. For $x \in L_1[0,T]$ we put
\[\|x\|_\infty = \sup_{t \in [0,T]} |x(t)| \quad \text{and} \quad \bar{x} = \frac{1}{T} \int_0^T x(s) \, ds. \]
If $f : [0,T] \times (0,\infty) \to \mathbb{R}$ satisfies the Carathéodory conditions on $[0,T] \times (0,\infty)$ we write
\begin{equation}
f \in Car([0,T] \times (0,\infty)).
\end{equation}
2.1. Definition. A function \(u : [0, T] \to \mathbb{R} \) is a solution to problem (1.1) (1.2) if \(\phi_p(u') \in AC[0, T] \), \(u > 0 \) on \([0, T]\), \((\phi_p(u'(t)))' = f(t, u(t)) \) for a.e. \(t \in [0, T] \), \(u(0) = u(T) \) and \(u'(0) = u'(T) \).

Notice that the requirement \(\phi(u') \in AC[0, T] \) implies that \(u \in C^1[0, T] \).

The singular problem (1.1), (1.2) will be also investigated through regular auxiliary problems of the form

\[
(2.2) \quad (\phi_p(u'))' = \tilde{f}(t, u), \quad u(0) = u(T), \quad u'(0) = u'(T),
\]
or

\[
(2.3) \quad (\phi_p(u'))' = \tilde{f}(t, u), \quad u(a) = u(b) = 0,
\]

where \(\tilde{f} \in Car([0, T] \times \mathbb{R}) \) and \(a, b \in \mathbb{R}, \ a < b. \) As usual, by a solution of problem (2.2) we understand a function \(u \) such that \(\phi_p(u') \in AC[0, T], \) (1.2) is true and \((\phi_p(u'(t)))' = \tilde{f}(t, u(t)) \) for a.e. \(t \in [0, T]. \) Analogously, \(u \) is a solution to (2.3) if \(\phi_p(u') \in AC[a, b], \ u(a) = u(b) = 0 \) and \((\phi_p(u'(t)))' = \tilde{f}(t, u(t)) \) for a.e. \(t \in [a, b]. \)

The lower and upper functions method combined with the topological degree argument is an important tool for proofs of solvability of boundary value problems. For our purposes the following definitions of lower and upper functions associated with problems (2.2) or (2.3) are suitable.

2.2. Definition. Let \(\tilde{f} \in Car([0, T] \times \mathbb{R}). \) We say that a function \(\sigma \in C[0, T] \) is a lower function of problem (2.2) if \(\phi_p(\sigma') \in AC([0, T]) \) and

\[
(2.4) \quad \begin{cases}
(\phi_p(\sigma'(t)))' \geq \tilde{f}(t, \sigma(t)) & \text{for a.e. } t \in [0, T], \\
\sigma(0) = \sigma(T), & \sigma'(0) \geq \sigma'(T).
\end{cases}
\]

Analogously, \(\sigma \in C[0, T] \) is a lower function of (2.3) if \(\phi_p(\sigma') \in AC([a, b]) \) and

\[
(2.5) \quad \begin{cases}
(\phi_p(\sigma'(t)))' \geq \tilde{f}(t, \sigma(t)) & \text{for a.e. } t \in [a, b], \\
\sigma(a) \leq 0, & \sigma(b) \leq 0.
\end{cases}
\]

If the inequalities in (2.4) or (2.5) are reversed, then \(\sigma \) is called an upper function of (2.2) or of (2.3), respectively.

The next two assertions based on the lower and upper functions method will be useful for our purposes.

2.3. Proposition. ([34, Theorem 3.2] or [31, Lemma 5.9]) Assume (1.3) and \(\tilde{f} \in Car([0, T] \times \mathbb{R}). \) Furthermore, let \(\sigma_1 \) and \(\sigma_2 \) be a lower and an upper function of (2.2) and let there be \(m \in L_1[0, T] \) such that

\[
\tilde{f}(t, x, y) > m(t) \ (\text{or } \tilde{f}(t, x) < m(t)) \quad \text{for a.e. } t \in [0, T] \text{ and all } x \in \mathbb{R}.
\]
Then problem (2.2) has a solution \(u \) such that
\[
\min\{\sigma_1(\tau_u), \sigma_2(\tau_u)\} \leq u(\tau_u) \leq \max\{\sigma_1(\tau_u), \sigma_2(\tau_u)\}
\]
for some \(\tau_u \in [0, T] \).

2.4. Proposition. ([6, Theorem 2.1] or [40] or [30, Lemma 3.2] or [7, Theorem 3.5])
Assume (1.3), \(\tilde{f} \in \text{Car}([0, T] \times \mathbb{R}) \) and let \(a, b \in \mathbb{R}, \ a < b \) be given. Furthermore, let \(\sigma_1 \) and \(\sigma_2 \) be a lower and an upper function of (2.3) such that \(\sigma_1 \leq \sigma_2 \) on \([a, b]\).

Then problem (2.3) has a solution \(u \) such that \(\sigma_1 \leq u \leq \sigma_2 \) on \([a, b]\).

3. Sign properties of quasilinear periodic problems

First, let us recall some basic known facts concerning initial value problems of the form

\[
\begin{align*}
(\phi_p(u'))' + \lambda \phi_p(u) &= 0, \\
u(t_0) &= 0, \quad u'(t_0) = d,
\end{align*}
\]

where \(p \in (1, \infty), \ t_0 \in \mathbb{R}, \ \lambda \in \mathbb{R} \) and \(d \in \mathbb{R} \). As in [8] (see also e.g. [1], [9], [13], [14], [43], [45], [26]), let us put
\[
\pi_p = 2(p - 1)^{1/\frac{1}{p}} \int_0^1 (1 - s)^{-1/\frac{1}{p}} \, ds.
\]

Clearly, \(\pi_2 = \pi \). Furthermore, it is known that
\[
\pi_p = 2\frac{(\pi/p)}{\sin(\pi/p)}.
\]
(See [14, Sec. 1.1.2], but take into account that our definition differs slightly from that used in [14], where \(\pi_p = 2 \int_0^1 (1 - s^p)^{-1/\frac{1}{p}} \, ds \).) It is known (see [14, Theorem 1.1.1]) that for each \(t_0 \in \mathbb{R}, \ \lambda \in \mathbb{R} \) and \(d \in \mathbb{R} \) problem (3.1), (3.2) has a unique solution \(u \) on \(\mathbb{R} \) which can be, by [8, sec. 3]), expressed as
\[
u(t) = d \lambda^{-1/p} \sin_p(\lambda^{1/p}(t - t_0)) \quad \text{for} \quad t \in \mathbb{R},
\]
where the function \(\sin_p : \mathbb{R} \to [-\frac{1}{p}, (p - 1)^{1/p}] \) is defined as follows.

Let \(w : [0, \pi_p/2] \to [0, (p - 1)^{1/p}] \) be the inverse function to
\[
x \in [0, \pi_p/2] \mapsto \int_0^x \frac{ds}{(1 - \frac{s^p}{p})^{1/p}} \in [0, (p - 1)^{1/p}].
\]
Further, put \(\tilde{w}(t) = w(\pi_p - t) \) for \(t \in [\pi_p/2, \pi_p] \) and then \(\tilde{w}(t) = -\tilde{w}(-t) \) for \(t \in [-\pi_p, 0] \). Finally, we define \(\sin_p : \mathbb{R} \rightarrow \mathbb{R} \) as the \(2\pi_p \)-periodic extension of \(\tilde{w} \) to the whole \(\mathbb{R} \). In particular, if \(d = 0 \), then \(u \equiv 0 \) on \(\mathbb{R} \). Obviously, we have

\[
\sin_p(t) = 0 \quad \text{if and only if} \quad t = n \pi_p, \ n \in \mathbb{N} \cup \{0\},
\]

\[
\sin_p(t) = (p - 1)^{1/p} \quad \text{if and only if} \quad t = (2n + 1) \frac{\pi_p}{2}, \ n \in \mathbb{N} \cup \{0\},
\]

and

\[
\sin_p(t) > 0 \quad \text{for} \quad t \in (2n \pi_p, (2n + 1) \pi_p), \ n \in \mathbb{N} \cup \{0\}.
\]

As a corollary, we immediately obtain that for given \(a, b \in \mathbb{R}, \ a < b, \) the corresponding Dirichlet problem

(3.3) \((\phi_p(u'))' + \lambda \phi_p(u) = 0, \ u(a) = u(b) = 0 \)

possesses a nontrivial solution, i.e. \(\lambda \) is an eigenvalue for (3.3), if and only if

(3.4) \(\lambda \in \left\{ \left(\frac{n \pi_p}{b - a} \right)^p : n \in \mathbb{N} \cup \{0\} \right\} \).

In particular,

(3.5) \(\mu_p = \left(\frac{\pi_p}{T} \right)^p \).

is the least eigenvalue for (3.3) with \(b - a = T \), wherefrom the following assertion follows.

3.1. Proposition. Let \(p \in (1, \infty), \ a, b \in \mathbb{R}, \ a < b, \) and let \(\lambda = \mu_p, \) where \(\mu_p \) is given by (3.5). Then problem (3.3) has a nontrivial solution if and only if \(b - a \geq T \).

It is easy to check that the function

\[
G(t, s) = \frac{T}{2\pi} \sin \left(\frac{\pi}{T} |t - s| \right), \ t, s \in [0, T],
\]

is the Green function for \(v'' + \mu_2 v = 0, \ v(0) = v(T), \ v'(0) = v'(T) \) and \(G(t, s) \) is nonnegative on \([0, T] \times [0, T]\). Hence, for classical linear second order periodic problems, the following antimaximum principle is true: for each \(h \in L_1[0, T] \) such that \(h \geq 0 \) a.e. on \([0, T]\), all solutions \(v \) of the problem

\[
v'' + \mu_2 v = h(t), \ v(0) = v(T), \ v'(0) = v'(T)
\]

are nonnegative on \([0, T]\).
3.2. Theorem. Let \(p \in (1, \infty) \) and let \(\mu \in L_1[0, T] \) be such that
\[
0 \leq \mu \leq \mu_p \quad \text{a.e. on } [0, T] \quad \text{and} \quad \overline{\mu} > 0,
\]
and let \(v \in C^1[0, T] \) be such that \(\phi_p(v') \in AC[0, T] \),
\[
(\phi_p(v'(t)))' + \mu(t) \phi_p(v(t)) \geq 0 \quad \text{for a.e. } t \in [0, T]
\]
and
\[
v(0) = v(T), \quad v'(0) = u'(T).
\]
Then \(v \geq 0 \) on \([0, T]\).

Proof. Let \(v \in C^1[0, T] \) be such that \(\phi_p(v') \in AC[0, T] \) and (3.6) and (3.7) hold. Without any loss of generality we may assume that \(v \) is does not vanish on \([0, T]\).

Step 1. First, we show that
\[
\max \{v(t) : t \in [0, T]\} > 0.
\]
Assuming, on the contrary, that \(v \leq 0 \) on \([0, T]\), we get by (3.7)
\[
(\phi_p(v'(t)))' \geq -\mu(t) \phi_p(v(t)) \geq 0 \quad \text{for a.e. } t \in [0, T].
\]
Therefore, \(v' \) is nondecreasing on \([0, T]\) and, taking into account (3.8), we deduce that \(v' = 0 \) on \([0, T]\). Consequently, \(v(t) \equiv v(0) \leq 0 \) on \([0, T]\). Hence, (3.7) reduces to
\[
-\mu(t) (-v(0))^{p-1} \geq 0 \quad \text{for a.e. } t \in [0, T].
\]
However, as \(\mu \geq 0 \) a.e. on \([0, T]\) and \(\overline{\mu} > 0 \), this is possible if and only if \(v(0) = 0 \), i.e. \(v \equiv 0 \) on \([0, T]\), which contradicts our assumption that \(v \) does not vanish identically on \([0, T]\).

Step 2. Assume that \(\min \{v(t) : t \in [0, T]\} < 0 \). Let us extend \(v \) and \(\mu \) to \(T \)-periodic functions on \(\mathbb{R} \). In view of Step 1, there are \(a, b \in \mathbb{R} \) such that \(v \geq 0 \) on \((a, b)\), \(v(a) = v(b) = 0 \) and
\[
0 < b - a < T.
\]
Moreover, \(v > 0 \) on \((a, b)\). Indeed, if \(v(\tau) = 0 \) for some \(\tau \in (a, b) \), then necessarily also \(v'(\tau) = 0 \), i.e. \(v \equiv 0 \) on \(\mathbb{R} \). In virtue of (3.6) and (3.7), we have
\[
(\phi_p(v'(t)))' + \mu_p \phi_p(v(t)) \geq (\phi_p(v'(t)))' + \mu(t) \phi_p(v(t)) \geq 0 \quad \text{for a.e. } t \in [a, b].
\]
Furthermore, put
\[
a_0 = a - \frac{T - b + a}{2}, \quad b_0 = a_0 + T
\]
and
\[\sigma_2(t) = d \mu_p^{-1/p} \sin_p \left(\mu_p^{1/p} (t - a_0) \right) \quad \text{for} \quad t \in \mathbb{R} \]

with \(d > 0 \) large enough, i.e. such that \(\sigma_2(t) > v(t) \geq 0 \) on \([a,b]\). We have
\[
(3.12) \quad \left(\phi_p(\sigma_2(t)) \right)' + \mu_p \phi_p(\sigma_2(t)) = 0 \quad \text{for a.e.} \quad t \in [a,b].
\]

Thus, \(\sigma_2 \) is an upper function for (3.3). Moreover, in view of (3.11), \(\sigma_1 = v \) is a lower function for (3.3). Hence, by Proposition 2.4, where we put \(\tilde{f}(t,x) = -\mu_p \phi_p(x) \) for \(t, x \in \mathbb{R} \), there exists a nontrivial solution \(u \) to (3.3). This, due to (3.10), contradicts Proposition 3.1. \(\square \)

4. Main results

First, let us recall the following a priori estimate (see [34, Lemma 2.4] or [31, Lemma 5.8]).

4.1. Lemma. Let \(p \in (1, \infty) \) and let \(\psi \in L_1[0,T] \). Then
\[
(4.1) \quad \|v'\|_{\infty} < \phi_p^{-1}(\|\psi\|_1)
\]
holds for each \(v \in C^1[0,T] \) fulfilling \(\phi_p(v') \in AC[0,T] \), \(v(0) = v(T) \), \(v'(0) = v'(T) \) and \((\phi_p(v'(t)))' > \psi(t) \) (or \((\phi_p(v'(t)))' < \psi(t) \)) for a.e. \(t \in [0,T] \).

Next, we prove an existence principle which relies on the comparison of the given problem (1.1), (1.2) with the related quasilinear problem fulfilling the antimaximum principle.

4.2. Theorem. Assume (1.3), (2.1) and \(p \in [2,\infty) \). Furthermore, let \(r > 0, \ A \geq r, \ \mu, \beta \in L_1[0,T] \) be such that \(\mu(t) \geq 0 \) a.e. on \([0,T] \), \(\overline{\beta} > 0 \),
\[
(4.2) \quad \overline{\beta} \leq 0 \quad \text{and} \quad f(t,x) \leq \beta(t) \quad \text{for a.e.} \quad t \in [0,T] \quad \text{and all} \quad x \in [A,B]
\]
and
\[
(4.3) \quad f(t,x) + \mu(t) \phi_p(x - r) \geq 0 \quad \text{for a.e.} \quad t \in [0,T] \quad \text{and all} \quad x \in [r,B],
\]
where
\[
B - A \geq \frac{T}{2} \phi_p^{-1}(\|m\|_1),
\]
\[
m(t) = \max \left\{ \sup\{f(t,x) : x \in [r,A]\}, \beta(t), 0 \right\} \quad \text{for a.e.} \quad t \in [0,T]
\]
and
\[
(4.4) \quad \left\{ \begin{array}{l}
\quad v \geq 0 \quad \text{on} \quad [0,T] \quad \text{holds for each} \quad v \in C^1[0,T] \quad \text{such that} \\
\quad \phi_p(v') \in AC[0,T], \\
\quad (\phi_p(v'(t)))' + \mu(t) \phi_p(v(t)) \geq 0 \quad \text{for a.e.} \quad t \in [0,T], \\
\quad v(0) = v(T), \quad v'(0) = v'(T).
\end{array} \right.
\]
Periodic problem with quasilinear differential operator and weak singularity

Then problem (1.1), (1.2) has a solution \(u \) such that

\[
(4.5) \quad r \leq u \leq B \text{ on } [0, T] \quad \text{and} \quad \| u' \|_\infty < \phi_p^{-1}(\|m\|_1).
\]

Proof. Part I. First, assume that \(\beta < 0 \).

Step 1. Put

\[
(4.6) \quad \tilde{f}(t, x) = \begin{cases}
 f(t, r) - \mu(t) \phi_p(x - r) & \text{if } x \leq r, \\
 f(t, x) & \text{if } x \in [r, B], \\
 f(t, B) & \text{if } x \geq B
\end{cases}
\]

and consider problem (2.2). We have \(\tilde{f} \in \text{Car}([0, T] \times \mathbb{R}) \). Furthermore, by (4.2)–(4.6), the inequalities

\[
(4.7) \quad \tilde{f}(t, x) \leq \beta(t) \text{ if } x \geq A
\]

and

\[
(4.8) \quad \tilde{f}(t, x) + \mu(t) \phi_p(x - r) \geq 0 \text{ for all } x \in \mathbb{R}
\]

are valid for a.e. \(t \in [0, T] \). In particular, in view of (4.6), we have

\[
(4.9) \quad \tilde{f}(t, x) \geq h(t) := -\mu(t) \phi_p(B - r) \text{ for a.e. } t \in [0, T] \text{ and all } x \in \mathbb{R},
\]

with \(h \in L_1[0, T] \).

By (4.8), \(\sigma_2 \equiv r \) is an upper function of (2.2). Further, if \(b = \beta - \beta \), then \(b \in L_1[0, T] \) and \(\beta = 0 \) and it is easy to see that there is a uniquely defined \(\sigma_0 \in C^1[0, T] \)

such that \(\phi_p(\sigma'_0) \in AC[0, T] \),

\[
(\phi_p(\sigma_0(t'))) = b(t) \text{ for a.e. } t \in [0, T] \quad \text{and} \quad \sigma_0(0) = \sigma_0(T) = 0.
\]

Now, let us choose \(c^* > 0 \) such that \(c^* + \sigma_0 \geq A \) on \([0, T] \) and define \(\sigma_1 = c^* + \sigma_0 \).

By (4.7) we have

\[
\sigma_1(0) = \sigma_1(T) = c^*,
\]

\[
(\phi_p(\sigma'_1(t))) = \beta(t) - \beta \geq \tilde{f}(t, \sigma_1(t)) \text{ for a.e. } t \in [0, T],
\]

and

\[
\phi_p(\sigma'_0(T)) - \phi_p(\sigma'_0(0)) = T \beta = 0.
\]

Consequently, \(\sigma_1 \) is a lower function of (2.2). Therefore, by (4.9) and by Proposition 2.3, the regular problem (2.2) has a solution \(u \) such that \(u(t_u) \geq r \) for some \(t_u \in [0, T] \).

Step 2. We show that

\[
(4.10) \quad u \geq r \text{ on } [0, T].
\]
To this aim, set \(v = u - r \). By virtue of (4.8), we have
\[
(\phi_p'(u'(t)))' + \mu(t) \phi_p(v(t)) = \tilde{f}(t, u(t)) + \mu(t) \phi_p(u(t) - r) \geq 0
\]
for a.e. \(t \in [0, T] \). By (4.4) it follows that \(v(t) \geq 0 \) on \([0, T]\), i.e. (4.10) is true.

Step 3. We show that
\[
(4.11) \quad u \leq B \text{ on } [0, T].
\]
Indeed, by the definition of \(m \) and by (4.6) and (4.7) we have
\[
\tilde{f}(t, x) \leq m(t) \quad \text{for a.e. } t \in [0, T] \text{ and all } x \geq r.
\]
Hence, we can use Lemma 4.1 to get the estimate
\[
(4.12) \quad \|u'\|_{\infty} \leq \phi_p^{-1}(\|m\|_1).
\]
If \(u \geq A \) were valid on \([0, T]\), then taking into account the periodicity of \(u' \) and (4.7) we would get
\[
0 = \int_0^T \tilde{f}(t, u(t)) \, dt \leq \int_0^T \beta(t) \, dt = T\beta < 0,
\]
a contradiction. Hence,
\[
\min\{u(s) : s \in [0, T]\} < A.
\]
Now, assume that
\[
u^* := \max\{u(s) : s \in [0, T]\} > A
\]
and extend \(u \) to be \(T \)-periodic on \(\mathbb{R} \). There are \(s_1, s_2 \) and \(s^* \in \mathbb{R} \) such that
\[
s_1 < s^* < s_2, \quad s_2 - s_1 < T, \quad u(s_1) = u(s_2) = A \quad \text{and} \quad u(s^*) = u^* > A.
\]
In particular, due to (4.12),
\[
2(u(s^*) - A) = \int_{s_1}^{s^*} u'(s) \, ds + \int_{s_2}^{s^*} u'(s) \, ds \leq T \phi_p^{-1}(\|m\|_1),
\]
wherefrom the estimate
\[
u(t) - A \leq \frac{T}{2} \phi_p^{-1}(\|m\|_1) \leq B - A \text{ on } [0, T]
\]
follows. Thus, (4.11) is true.

Step 4. The estimates (4.10) and (4.11) mean that \(r \leq u \leq B \) holds on \([0, T]\). In view of (4.6), we conclude that \(u \) is a solution to (1.1), (1.2).
Part II. Now, let \(\beta = 0 \). Put \(n_0 = \max\{\frac{1}{r}, \frac{1}{B-A}, 3\} \). For an arbitrary \(n \in \mathbb{N} \), define

\[
\tilde{f}_n(t, x) = \begin{cases} f(t, r) & \text{if } x \leq r, \\ f(t, x) & \text{if } x \in [r, A], \\ f(t, x) - \mu(t) \phi_p \left(\frac{1}{n} \frac{x-A}{x-A+1} \right) & \text{if } x \in (A, B], \\ f(t, B) - \mu(t) \phi_p \left(\frac{1}{n} \frac{B-A}{B-A+1} \right) & \text{if } x \geq B.
\end{cases}
\]

Taking into account (4.2), we get

\[
\tilde{f}_n(t, x) = f(t, x) - \mu(t) \phi_p \left(\frac{1}{n} \frac{x-A}{x-A+1} \right) \leq \beta(t) - \mu(t) \phi_p \left(\frac{1}{n} \frac{x-A}{x-A+1} \right)
\]

if \(x \in [A + \frac{1}{n}, B] \)

and

\[
\tilde{f}_n(t, x) = f(t, B) - \mu(t) \phi_p \left(\frac{1}{n} \frac{B-A}{B-A+1} \right) \leq \beta(t) - \mu(t) \phi_p \left(\frac{1}{2n^2} \right)
\]

if \(x \geq B \)

for a.e. \(t \in [0, T] \) and all \(n \in \mathbb{N} \) such that \(n \geq n_0 \). Thus,

\[
\tilde{f}_n(t, x) \leq \beta_n(t) := \beta(t) - \mu(t) \phi_p \left(\frac{1}{2n^2} \right)
\]

for \(x \geq A + \frac{1}{n} \), for a.e. \(t \in [0, T] \) and all \(n \geq n_0 \).

Clearly,

\[
\beta_n < 0 \quad \text{and} \quad \beta_n(t) \leq \beta(t) \quad \text{for a.e. } t \in [0, T].
\]

Furthermore, by (4.3) and (4.13), we have

\[
\tilde{f}_n(t, x) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right) \geq f(t, r) \geq 0 \quad \text{if } x \in [r - \frac{1}{n}, r],
\]

\[
\tilde{f}_n(t, x) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right) = f(t, x) + \mu(t) \phi_p (x-r) \geq 0 \quad \text{if } x \in [r, A],
\]

and, taking into account that

\[
\xi^\alpha + \eta^\alpha \leq (\xi + \eta)^\alpha \quad \text{holds for all } \xi, \eta \geq 0 \quad \text{and each } \alpha \geq 1,
\]

\[
\tilde{f}_n(t, x) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right)
\]

\[
= f(t, x) - \mu(t) \phi_p \left(\frac{1}{n} \frac{x-A}{x-A+1} \right) + \mu(t) \phi_p \left(x-r + \frac{1}{n} \right)
\]
\[\geq f(t, x) + \mu(t) \phi_p(x - r) \geq 0 \quad \text{if} \quad x \in [A, B], \]
and
\[\bar{f}_n(t, x) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right) \]
\[= f(t, B) - \mu(t) \phi_p \left(\frac{1}{n} \frac{B - A}{B - A + 1} \right) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right) \]
\[\geq f(t, B) + \mu(t) \phi_p (B - r) \geq 0 \quad \text{if} \quad x \geq B. \]

To summarize,
\[(4.16) \quad \bar{f}_n(t, x) + \mu(t) \phi_p \left(x - (r - \frac{1}{n}) \right) \geq 0 \quad \text{for all} \quad x \geq r - \frac{1}{n}. \]

For a.e. \(t \in [0, T] \) and all \(n \in \mathbb{N} \), put
\[\bar{m}_n(t) := \max \{ \sup \{ \bar{f}_n(t, x) : x \in [r - \frac{1}{n}, B + \frac{1}{n}] \}, b_n(t) \}. \]

In view of (4.13) and (4.15), we have
\[\bar{m}_n(t) \leq m(t) \quad \text{for a.e.} \quad t \in [0, T] \quad \text{and} \quad n > \frac{1}{B - A}. \]

This together with (4.14)-(4.16) means that, for each \(n \in \mathbb{N} \) large enough, Part I of this proof ensures the existence of a solution \(u_n \) to the auxiliary problem
\[(\phi_p(u'_n))' = \bar{f}_n(t, u_n), \quad u_n(0) = u_n(T), \quad u'_n(0) = u'_n(T) \]
which satisfies the estimates
\[r - \frac{1}{n} \leq u_n(t) \leq B + \frac{1}{n} \quad \text{on} \quad [0, T] \quad \text{and} \quad \|u'_n\|_{\infty} \leq \phi_p^{-1}(\|m\|_1). \]

Now, notice that
\[|\bar{f}_n(t, x) - \bar{f}(t, x)| \leq \mu(t) \phi_p \left(\frac{1}{n} \right) \quad \text{for a.e.} \quad t \in [0, T], \quad x \in \mathbb{R} \quad \text{and all} \quad n \in \mathbb{N}, \]
where
\[\bar{f}(t, x) = \begin{cases} f(t, r) & \text{if} \quad x \leq r, \\ f(t, x) & \text{if} \quad x \in [r, B], \\ f(t, B) & \text{if} \quad x \geq B. \end{cases} \]
Thus, in a standard way (using the Arzelá-Ascoli and the Lebesgue Dominated Convergence Theorem) we can show that the sequence \(\{u_n\}_{n=1}^{\infty} \) contains a subsequence which converges in \(C^1[0, T] \) to a solution \(u \) of the problem

\[
(\phi_p(u'))' = \tilde{f}(t, u), \quad u(0) = u(T), \quad u'(0) = u'(T)
\]

which satisfies necessarily the estimate (4.5), i.e. solves also (1.1), (1.2).

The next supplementary assertion concerning the case \(p \in (1, 2) \) follows immediately from Part I of the previous proof.

4.3. Theorem. Let all assumptions of Theorem 4.2 be satisfied, with the exceptions that \(p \in (1, 2) \) is allowed and \(\overline{\beta} < 0 \) is required in (4.2).

Then problem (1.1), (1.2) has a solution \(u \) such that (4.5) is true.

Theorems 3.2, 4.2 and 4.3 yield the following new existence criterion.

4.4. Theorem. Assume (1.3) and (2.1). Furthermore, let \(p \in (1, \infty) \), \(\mu_p = (\pi_p/T)^p \) and let \(r > 0 \), \(A \geq r \), \(B > A \) and \(\beta \in L_1[0, T] \) be such that (4.2), with \(\overline{\beta} < 0 \), if \(p \in (1, 2) \), and (4.3) hold, where

\[
B - A \geq \frac{T}{2} \phi_p^{-1}(\|m\|_1)
\]

and

\[
m(t) = \max \left\{ \sup\{f(t, x) : x \in [r, A]\}, \beta(t), 0 \right\} \text{ for a.e. } t \in [0, T].
\]

Then problem (1.1), (1.2) has a solution \(u \) such that (4.5) is true.

In particular, for the Duffing type equation \((\phi_p(u'))' = g(u) + e(t)\) we have

4.5. Corollary. Let \(p \in (1, \infty) \). Suppose that \(f(t, x) = g(x) + e(t) \) for \(x \in (0, \infty) \) and a.e. \(t \in [0, T] \), where \(g \in C(0, \infty), \ e \in L_1[0, T] \), and

\[
(4.17) \quad \overline{\varepsilon} + \limsup_{x \to \infty} g(x) < 0
\]

and there is \(r > 0 \) such that

\[
(4.18) \quad e(t) + g(x) + \mu_p x^{p-1} \geq \mu_p r^{p-1} \text{ for a.e. } t \in [0, T] \text{ and all } x \geq r.
\]

Then problem (1.1), (1.2) has a solution \(u \) such that \(u(t) \geq r \) on \([0, T] \).

Proof. Due to (4.17), we can find \(A \geq r \) such that

\[
g(x) + \overline{\varepsilon} < \frac{1}{2} \left(\overline{\varepsilon} + \limsup_{x \to \infty} g(x) \right) < 0 \text{ for } x \in [A, \infty).
\]
Consequently,
\[f(t, x) = g(x) + e(t) = (g(x) + \bar{e}) + (e(t) - \bar{e}) < \frac{1}{2} \left(\bar{e} + \limsup_{x \to \infty} g(x) \right) + e(t) - \bar{e} \]
for a.e. \(t \in [0, T] \) and all \(x \in [A, \infty) \). Therefore (4.2) holds with
\[\beta(t) := e(t) - \bar{e} + \frac{1}{2} \left(\bar{e} + \limsup_{x \to \infty} g(x) \right) \]
and \(B > A \) arbitrarily large. We have \(\beta < 0 \). Furthermore, according to (4.18), by using that \((x - r)^{p-1} \geq x^{p-1} - r^{p-1}\), we deduce that \(f \) satisfies (4.3) with \(B > r \) arbitrarily large.

Now, the assertion follows by Theorem 4.4.

For the case \(p \geq 2 \) we have an existence result under weaker assumptions.

4.6. Corollary. Let \(p \geq 2 \). Assume the hypothesis of the previous result, replacing condition (4.17) by the following one:

There is \(B > 0 \) such that \(\bar{e} + g(x) \leq 0 \) for all \(x \geq B \).

Then problem (1.1), (1.2) has a solution \(u \) such that \(u(t) \geq r \) on \([0, T]\).

4.7. Example. Consider the problem
\[
(\phi_p(u'))' + k u^{p-1}(t) = a u^{-\alpha} + e(t), \quad u(0) = u(T), \quad u'(0) = u'(T),
\]
where \(a > 0 \), \(\alpha > 0 \), \(k \in [0, \mu_p] \) and \(e \in L_1[0, T] \).

It is easy to see that if \(k > 0 \), then the assumption (4.17) of Corollary 4.5 is satisfied for all \(e \in L_1[0, T] \), while in the case \(k = 0 \) this condition holds whenever \(\bar{e} < 0 \).

Furthermore, define \(h(x) = (\mu_p - k) x^{p-1} + a x^{-\alpha} \) for \(x > 0 \). We can verify that
\[
h_* := \inf_{x \in (0, \infty)} h(x) = a \left(1 + \frac{\alpha}{p - 1} \right) \left(\frac{(p - 1) (\mu_p - k)}{\alpha a} \right)^{\frac{\alpha}{n+p-1}}.
\]
Therefore, under the assumption
\[
e_* := \inf_{t \in [0, T]} e(t) > -h_*,
\]
we get for a.e. \(t \in [0, T] \) and all \(x > 0 \)
\[
h(x) + e(t) \geq e_* + h_* > 0,
\]
i.e. the second assumption (4.18) of Corollary 4.5 is satisfied with
\[
r = \left(\frac{e_* + h_*}{\mu_p} \right)^{\frac{1}{p-1}}.
\]
To summarize: by Corollary 4.5 problem (4.19) has a positive solution in the following cases:

\[k = 0, \quad \varepsilon < 0 \quad \text{and} \quad \inf \operatorname{ess} e(t) > -a \left(1 + \frac{\alpha}{p-1}\right) \left(\frac{(p-1)\mu_p}{\alpha a}\right)^{\frac{\alpha}{\alpha + p - 1}} \]

or

\[k \in (0, \mu_p) \quad \text{and} \quad \inf \operatorname{ess} e(t) > -a \left(1 + \frac{\alpha}{p-1}\right) \left(\frac{(p-1)(\mu_p - k)}{\alpha a}\right)^{\frac{\alpha}{\alpha + p - 1}}. \]

In particular, problem (1.8) has a positive solution if

\[\inf \operatorname{ess} e(t) > 0. \]

For the case \(p \geq 2 \), from Corollary 4.6, we can verify that if

\[k = 0, \quad \varepsilon \leq 0 \quad \text{and} \quad \inf \operatorname{ess} e(t) > -a \left(1 + \frac{\alpha}{p-1}\right) \left(\frac{(p-1)\mu_p}{\alpha a}\right)^{\frac{\alpha}{\alpha + p - 1}}, \]

then problem (4.19) has a positive solution.

References

[8] M. del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along \(p \) of a Leray-Schauder degree result and existence for \(|u'|^{p-2} u' + f(t, u) = 0, \quad u(0) = u(T) = 0, \quad p > 1 \). *J. Differential Equations* **80** (1989), 1–13.

Periodic problem with quasilinear differential operator and weak singularity

Authors’ addresses:
Alberto Cabada, Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, e-mail: cabada@usc.es
Alexander Lomtatidze, Department of Mathematical Analysis, Faculty of Natural Sciences, Masaryk University, CZ 662 95 Brno, Janáckovo nám 2a, Czech Republic, e-mail: bacho@math.muni.cz
Milan Tvrdý, Mathematical Institute, Academy of Sciences of the Czech Republic, CZ 115 67 Praha 1, Žitná 25, Czech Republic, e-mail: tvrdy@math.cas.cz
The preprint series was founded in 1982. Its purpose is to present manuscripts of submitted or unpublished papers and reports of members of the Mathematical Institute of the Academy of Sciences of the Czech Republic. The authors are fully responsible for the content of the preprints.

Mail address: Mathematical Institute,
Academy of Sciences of the Czech Republic
Žitná 25,
CZ-115 67 Praha 1
Czech Republic

phone: +420 222 090 711 fax: +420 222 211 638
e-mail: mathinst@math.cas.cz http://www.math.cas.cz

Latest preprints of the series:

2006

166 Eduard Feireisl and Šárka Nečasová: On the motion of several rigid bodies in a viscous multipolar fluid
165 S. Kračmar, Š. Nečasová, P. Penel: Anisotropic L^2-estimates of weak solutions to the stationary Oseen-type equations in \mathbb{R}^3 for a rotating body
164 Patrick Penel and Ivan Straškraba: Construction of a Lyapunov functional for 1D-viscous compressible barotropic fluid equations admitting vacua
163 Martin Markl: Operads and props

2005

162 Jiří Šremr: On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators
161 Jiří Šremr: On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type
159 Andrej Rontó: Upper bounds for the eigenvalues of compact linear operators in a preordered Banach space
158 Martin Markl: Cohomology operators and the Deligne conjecture

2004

157 J. Eisner, M. Kučera, L. Recke: A global bifurcation result for variational inequalities
156 Irena Rachůnková, Milan Tvrdý: Second order periodic problem with Φ-Laplacian and impulses—part II
155 Irena Rachůnková, Milan Tvrdý: Second order periodic problem with Φ-Laplacian and impulses—part I

2003

154 J. Eisner, M. Kučera, L. Recke: Direction and stability of bifurcation branches for variational inequalities
153 Irena Rachůnková, Milan Tvrdý: Periodic boundary value problems for nonlinear second order differential equations with impulses—part III
152 Pavel Krutitskii, Dagmar Medková: Neumann and Robin problem in a cracked domain with jump conditions on cracks

2002

151 Irena Rachůnková, Milan Tvrdý: Periodic boundary value problems for nonlinear second order differential equations with impulses—part II
150 Miroslav Šilhavý: An $O(n)$ invariant rank 1 convex function that is not polyconvex
149 Šárka Nečasová: Asymptotic properties of the steady fall of a body in viscous fluids