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On optimality conditions in control of elliptic variational
inequalities ∗

Jǐŕı Outrata†, Jǐŕı Jarušek‡, Jana Stará§

Abstract. In the paper we consider optimal control of a class of strongly monotone variational
inequalities, whose solution map is directionally differentiable in the control variable. This prop-
erty is used to derive sharp pointwise necessary optimality conditions provided we do not impose
any control or state constraints. In presence of such constraints we make use of the generalized
differential calculus and derive, under a mild constraint qualification, optimality conditions in a
”fuzzy” form. For strings, these conditions may serve as an intermediate step toward pointwise
conditions of limiting (Mordukhovich) type. For membranes, however, limiting conditions cannot
be derived in this way.

Keywords. Directional differentiability, critical cone, strong local fuzzy sum rule, calmness, ca-
pacity.

1 Introduction

Numerous important optimization problems arising in continuum mechanics, economy, trans-
portation networks etc. can be modeled as optimal control of variational inequalities or com-
plementarity problems. Since 1996 (cf. [10]) these models are considered in the framework of
mathematical programs with equilibrium constraints (MPECs). Early works on this subject
arose, however, already in the seventies (cf. [4],[11]) and the development has proceeded all
the time.

In a recent monograph, [12, Chapter 5], Mordukhovich has applied advanced tools of
variational analysis and generalized differential calculus to derive necessary optimality con-
ditions for a class of infinite-dimensional MPECs in which the equilibria are governed by
various types of generalized equations (GEs). These conditions require besides the standard
constraint qualifications (CQs) also the so-called sequential-normal-compactness (SNC) con-
ditions which ensure a certain minimal amount of compactness needed to apply the basic
rules of generalized differentiation in infinite dimensions. In some special situations under
a surjectivity assumption none of the above conditions are needed, but the derivation of
workable optimality conditions of this type still remains a difficult task. The reason consists
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in our inability to express weak∗ limits of sequences in some functions spaces in a suitable
form preserving the sharpness (selectivity) of the resulting optimality conditions. This hur-
dle has been successfully taken in [8] in the special case of control of a contact problem
with a string. The main argument came there from the compact embedding of H̊1(0, 1) into
C0(0, 1), which has enabled to derive sharp pointwise conditions, very close to the corre-
sponding finite-dimensional case. Unfortunately, this argument cannot be used whenever we
replace an interval by a two–dimensional domain. (Observe that a higher dimension has no
physical meaning).

The aim of this paper is threefold:

(i) To derive for a class of infinite-dimensional MPECs including the problem from [8] sharp
”fuzzy” optimality conditions with a weak (nonrestrictive) CQ;

(ii) to use the obtained fuzzy conditions as an intermediate step on the way to conditions
in terms of limiting objects for the MPEC from [8];

(iii) to analyse the bounds of the approach (ii) in the presented function-space setting.

The organization of the paper is as follows. In Section 2 our MPEC is formulated and
a crucial auxiliary assertion is stated. Section 3 is devoted to the special case without
any control or state constraints. In this situation our approach directly leads to very sharp
pointwise conditions corresponding to the notion of strong stationarity from [15]. In Section 4
the fuzzy optimality conditions are derived under a weak calmness CQ that is automatically
fulfilled whenever one has to do with control constraints only. These conditions enable us
to recover the result from [8] in a different way. The last Section 5 shows then by means
of a sophisticated example that the proof techniques from [8] or from Section 4 cannot be
directly extended beyond the one-dimensional domains.

Our notation is standard: for a closed set A, δA(·) stands for the indicatory function of
A, dA(·) is the distance to A and TA(x̄) denotes the Bouligand (contingent) cone of A at
x̄ ∈ A. For a cone D with vertex at 0, D◦ denotes its negative polar. B(x, r), B(x, r) stand
for the open and closed ball centered at x with radius r, respectively; B := B(0, 1) and Ω̄ is
the closure of Ω. For a mapping F , GrF denotes its graph.

For the readers’ convenience we state now the definitions of several basic notions from
modern variational analysis. For a detailed description of their properties, the reader is
referred to the monographs [14] and [12].

Given a closed set A in an Asplund space X and a point x̄ ∈ A, we denote by N̂A(x̄) the
Fréchet (regular) normal cone to A at x̄, defined by

N̂A(x) =

{
x∗ ∈ Rn; lim sup

x
A−→x

〈x∗, x− x〉
‖x− x‖

≤ 0

}
.

The limiting (Mordukhovich) normal cone to A at x, denoted NA(x), is defined by

NA(x) := Lim sup
x

A−→x

N̂A(x) ,

where “Lim sup” is the Kuratowski-Painlevé outer limit of sets (see [12]). If A is convex,

then NA(x) = N̂A(x) amounts to the classical normal cone in the sense of convex analysis.

We say that A is normally regular at x̄, provided NA(x̄) = N̂A(x̄).
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For an extended-real-valued function f [X → R̄] and x̄ ∈ domf

∂̂f(x̄) = {ξ ∈ X∗; (ξ,−1) ∈ N̂epi f (x̄, f(x̄))}

is the Fréchet subdifferential of f at x̄. For an indicatory functional δA one has ∂̂δA(x̄) =

N̂A(x̄).

2 Problem formulation and preliminaries

Throughout the paper, we are dealing with the MPEC

minimize ϕ(x, y)
subject to

0 ∈ A y − x+ a+ND(y)
x ∈ ω
y ∈ Ξ,

(2.1)

where x, a ∈ H−1(Ω), y ∈ H̊1(Ω),A [H̊1(Ω) → H−1(Ω)] is linear and elliptic, D = {v ∈
H̊1(Ω); v(s) ≥ 0 a.e. in Ω}, the sets ω ⊂ H−1(Ω), Ξ ⊂ H̊1(Ω) are nonempty and closed,
and ϕ[H−1(Ω) × H̊1(Ω) → R] is continuously differentiable. It is well-known and easily
verifiable that under these assumptions the solution map

S(x) := {y ∈ H̊1(Ω); 0 ∈ A y − x+ a+ND(y)}

is single-valued and Lipschitz. In this way, (2.1) can be considered as a special optimal
control problem and therefore we will entitle the variables x and y as control and state
variable, respectively.

In the sequel, we consider sets where a function y ∈ H̊1 attains either positive or zero
values. In the framework of the classical definition of H̊1(Ω) these sets are defined up to a
set of Lebesgue measure zero which is too coarse for our case. Hence we will use capacity
[see [2], Section 6.4.3] to get more precise results. We start with some elements of capacity
theory.

Definition 2.1. ([2, Definition 6.47]) Let A be a Borel subset of Ω and α ∈ R.

(i) We say that y ∈ H̊1(Ω) satisfies the inequality y ≥ α over A in the sense of H̊1(Ω) if
there exists a sequence yn → y in H̊1(Ω) such that yn ≥ α over a neighborhood of A.

(ii) The capacity of A (in the sense of H̊1(Ω)) is defined as 1

cap(A) := inf{||y||2; y ≥ 1 over A}.

(iii) We say that a measurable function y is quasi-continuous if there is a non-increasing
sequence Ωn of open subsets of Ω such that f is continuous on Ω\Ωn and cap(Ωn) → 0.

(iv) We say that a property P of y ∈ H̊1(Ω) holds quasi everywhere (q.e.) if there exists a
subset E of Ω so that P holds on Ω \ E and cap(E) = 0.

It is obvious that cap(A) is greater or equal to the Lebesgue measure of A. Denote by
M+(Ω) (resp. M−(Ω)) the set of all nonnegative (resp. nonpositive) Radon measures on Ω,
and by (H−1(Ω))+ the positive cone in (H−1(Ω)).

1By ||y|| we understand the norm of y in H̊1(Ω).
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Lemma 2.2. The capacity is a nonnegative, subaditive set function having the following
properties:

(i) For y ∈ H̊1(Ω) there is a quasi-continuous everywhere defined function ỹ such that
y(s) = ỹ(s) q.e.on Ω. Thus ỹ belongs to the equivalence class of y. (See [2, Lemma
6.50].)

(ii) H−1(Ω)+ = H−1(Ω) ∩M+(Ω).(See [2, Theorem 6.54] and its consequences.)

(iii) Let A be a Borel set. Then A has null capacity if and only if µ(A) = 0 for every
µ ∈ H−1(Ω) ∩M+(Ω).(See [2, Lemma 6.55].)

(iv) Let y ∈ H̊1(Ω), µ ∈ H−1(Ω) ∩M+(Ω). Then y ∈ L1(Ω;µ) and

< µ, y >H−1(Ω),H̊1(Ω)=

∫
Ω

ydµ.

(See [2, Lemma 6.56].)

So, when speaking about y ∈ H̊1(Ω), we will always consider its quasi continuous repre-
sentative. Let us associate with each y ∈ D the sets

L(y) := {s ∈ Ω; y(s) > 0}
I(y) := {s ∈ Ω; y(s) = 0}
K(y) := Ω r (L(y) ∪ I(y)).

(2.2)

According to [2, Lemma 6.49], cap(K(y)) = 0 and y ≥ 0 q.e. on Ω. Further, by [2, Theorem
6.57]

TD(y) = {z ∈ H̊1(Ω); z ≥ 0 q.e. on I(y)} (2.3)

and
N̂D(y) = {µ ∈ H−1(Ω) ∩M−(Ω);µ(L(y)) = 0}. (2.4)

In the sequel, we will also make use of [11], according to which S is Hadamard differen-
tiable at any x in the direction d. To evaluate this directional derivative, one has

S ′(x; d) = v,

where v is the unique solution of the GE

0 ∈ A v − d+NC(x)(v) (2.5)

with the critical cone

C(x) = TD(y) ∩ (µ)⊥ = {z ∈ H̊1(Ω); z ≥ 0 q.e. on I(y), 〈µ, z〉 = 0},
µ = −A y + x− a.

(2.6)

In addition to the sets (2.2) let us introduce the sets:

I+(µ) := supp µ

I0(y, µ) := I(y) r I+(µ)
(2.7)

The arguments at L, I, I+ and I0 will be omitted whenever this cannot cause any confusion.
In terms of these sets

C(x) ⊂ {z ∈ H̊1(Ω); z ≥ 0 q.e. on I0(y, µ), z = 0 µ-a.e. on I+(µ)}. (2.8)
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3 Unconstrained case

Consider a reference pair (x̄, ȳ) ∈ GrS and put

µ̄ = −A ȳ + x̄− a (i.e. µ̄ ∈ ND(ȳ)).

It is clear from the Hadamard differentiability of S that

TGrS(x̄, ȳ) = {(d, v) ∈ H−1(Ω)× H̊1(Ω); 0 ∈ A v − d+NC(x̄)(v)},

where C(x̄) is given by (2.6) with x, y, µ replaced by x̄, ȳ, µ̄, respectively. Let Ñ denote the
negative polar of TGrS(x̄, ȳ).

Lemma 3.1.

Ñ = {(p, q) ∈ H̊1(Ω)×H−1(Ω); A ∗p+ q ∈ (C(x̄))◦, p ∈ C(x̄)}. (3.1)

Proof. By definition,

Ñ = {(p, q); 〈p, d〉+ 〈q, v〉 ≤ 0 ∀ (d, v) ∈ TGrS(x̄, ȳ)}
= {(p, q); 〈p,A v + ξ〉+ 〈q, v〉 ≤ 0 ∀ (v, ξ) such that ξ ∈ NC(x̄)(v)}
= {(p, q); 〈A ∗p+ q, v〉+ 〈p, ξ〉 ≤ 0 ∀ (v, ξ) ∈ GrNC(x̄)}.

(3.2)

Since C(x̄) is a closed convex cone, one has

GrNC(x̄) = {(v, ξ) ∈ H̊1(Ω)×H−1(Ω); v ∈ C(x̄), ξ ∈ (C(x̄))◦, 〈ξ, v〉 = 0}. (3.3)

If we ignore the complementarity condition in (3.3), we get a set, say Q, not smaller than
GrNC(x̄). Consequently,

Ñ ⊃ {(p, q); 〈A ∗p+ q, v〉+ 〈p, ξ〉 ≤ 0 ∀ (v, ξ) ∈ Q}
⊃ {(p, q); A ∗p+ q ∈ (C(x̄))◦, p ∈ C(x̄)}.

(3.4)

On the other hand, if we set first v = 0 and then ξ = 0, we obtain the opposite inclusion
and the claim holds.

Our next task is to find a suitable description of (C(x̄))◦.

Lemma 3.2. Let η ∈ (C(x̄))◦. Then one has

(i) 〈η, z〉 = 0 for all z ∈ H̊1(Ω) such that z = 0 q.e. on I(ȳ);

(ii) 〈η, z〉 ≤ 0 for all z ∈ D such that 〈µ̄, z〉 = 0.

Proof. Select a test function z ∈ H̊1(Ω) satisfying the condition z = 0 q.e. on I(ȳ). Since
µ̄(L(ȳ)) = 0, one has then 〈µ̄, z〉 = 0, and so ±z ∈ C(x̄). This implies condition (i).

(ii) follows directly from (2.6).

Remark 3.3. A weaker version of (i) attains the form

〈η, z〉 = 0 for all z ∈ H̊1(Ω) such that ȳ ± εz ∈ D for some ε > 0.
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On the basis of the above lemmas one can immediately derive sharp optimality conditions
for the unrestricted case when ω = H−1(Ω) and Ξ = H̊1(Ω).

Theorem 3.4. Let (x̂, ŷ) be a (local) solution of the MPEC

minimize ϕ(x, y)
subject to

0 ∈ A y − x+ a+ND(y).

Then there exist multipliers p̂ ∈ H̊1(Ω), η̂ ∈ H−1(Ω) such that

0 = ∇xϕ(x̂, ŷ) + p̂

0 = ∇yϕ(x̂, ŷ)−A ∗p̂+ η̂
(3.5)

and, additionally, with µ̂ = −A ŷ + x̂− a, they fulfill the conditions

(i) p̂ ≥ 0 q.e. on I0(ȳ, µ̄);

(ii) p̂ = 0 µ̂-a.e.on I+(µ̄);

(iii) 〈η̂, z〉 = 0 for all z ∈ H̊1(Ω) such that z = 0 q.e. on I(ȳ);

(iv) 〈η̂, z〉 ≤ 0 for all z ∈ D such that 〈µ̂, z〉 = 0.

Proof. By virtue of continuous differentiability of ϕ, one has

0 ∈ ∇ϕ(x̂, ŷ) + N̂GrS(x̂, ŷ).

As shown eg in [12, Cor. 1.11],

N̂GrS(x̂, ŷ) ⊂ (TGrS(x̂, ŷ))◦ = Ñ .

Consequently, by virtue of [1],

0 = ∇xϕ(x̂, ŷ) + p̂

0 = ∇yϕ(x̂, ŷ)−A ∗p̂+ η̂

with some p̂ ∈ C(x̄), η̂ ∈ (C(x̄))◦.
The rest follows from Lemmas 3.1, 3.2.

The above conditions mimic the concept of strong stationarity introduced in [15] for
finite-dimensional MPECs. Hence, optimality conditions of Theorem 3.3 are sharper than
the conditions in [8], based on the M(ordukhovich)-stationarity.

Example 1. Consider the MPEC from [8] defined by Ω = (0, 1),

ϕ(x, y) = 〈g, x〉+

∫ 3/4

1/4

y(s)ds, (3.6)

A y = −4y, and

a(s) =

{
−2 for s ∈

[
0, 1

4

]
∪
[

3
4
, 1
]
.

0 otherwise .
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In (3.6)

g : s 7→


0 for s ∈

[
0, 1

4

)
∪
(

3
4
, 1
]

− 1
16

(
s− 1

4

)
for s ∈

[
1
4
, 1

2

]
− 1

64
+ 1

16

(
s− 1

2

)
for s ∈

(
1
2
, 3

4

]
.

It is easy to see that the pair

x̂ = −δ1/4 − δ3/4

ŷ(s) =


−s2 + 1

4
s on

[
0, 1

4

]
−s2 + 7

4
s− 3

4
on
[

3
4
, 1
]

0 otherwise

is a (local) solution of this MPEC. The optimality conditions (3.5) of Theorem 3.3 attain
the form

0 = g + p̂
0 = γ + η̂,

where γ is the characteristic function of the interval [1/4, 3/4]. Since µ̄ = x̄, one has

L(ŷ) =
(
0, 1

4

)
∪
(

3
4
, 1
)
,

I+(µ̂) =
{

1
4

}
∪
{

3
4

}
,

and we observe that the multipliers (p̂, η̂) = (−g,−γ) fulfill all conditions (i) - (iv) of Theorem
3.3.

4 Constrained case

The situation changes, however, whenever we have to do with control or state constraints.
The following approach relies on the local fuzzy sum rule due to A.D. Ioffe ([3], [5]).

Observe first that a (local) solution (x̂, ŷ) of (2.1) is a minimizer of the sum

ϕ(x, y) + δGrS(x, y) + δω×Ξ(x, y)

over a neighborhood O of (x̂, ŷ). In what follows we employ the powerful notion of calmness
as a qualification condition.

Definition 4.1. A multifunction Φ between Banach spaces U and V is said to be calm at a
point (ū, v̄) ∈ GrΦ, provided there exist a nonnegative modulus L and neighborhoods U of ū
and V of v̄ such that

Φ(u) ∩ V ⊂ Φ(ū) + L‖u− ū‖B for all u ∈ U .

Lemma 4.2. Assume that the ”perturbation” map M [H−1(Ω)×H̊1(Ω) ⇒ H−1(Ω)×H̊1(Ω)]
defined by

M(q1, q2) = {(x, y) ∈ GrS; x− q1 ∈ ω, y − q2 ∈ Ξ} (4.1)

is calm at (0, 0, x̂, ŷ). Then there is a closed ball B centered at (x̂, ŷ) such that the inequality

ϕ(x̂, ŷ) ≤ lim inf
ν↘0

{ϕ(x1, y1); (x1, y1) ∈ B, ∃ points (x2, y2), (x3, y3) ∈ B
such that y2 = S(x2), x3 ∈ ω, y3 ∈ Ξ and diam{(x1, y1), (x2, y2), (x3, y3)} ≤ ν},

(4.2)

holds true.
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Proof. Let V be a neighborhood of (x̂, ŷ) from the definition of calmness and L ≥ 0 be the
respective modulus. We can definitely shrink B if necessary to achieve B ⊂ V and 2B ⊂ O.
Let l be a Lipschitzian modulus of ϕ on O and let V stand for the quantity on the right-hand
side of (4.2). Clearly, since ‖(x1, y1)− (x2, S(x2))‖ ≤ ν, V admits the lower bound

V ≥ lim inf
ν↘0

{ϕ(x2, S(x2))− lν; (x2, S(x2)) ∈ B, ∃(x3, y3) ∈ B such that

x3 ∈ ω, y3 ∈ Ξ, ‖(x2, S(x2))− (x3, y3)‖ ≤ ν}.
(4.3)

The last inequality at the right hand side of (4.3) implies that

(x2, S(x2)) ∈M(q1, q2)

with q1 = x2 − x3, q2 = S(x2) − y3. Since (x2, S(x2)) ∈ B , by the calmness of M to each
ν sufficiently small there is a point (x̃, ỹ) ∈ M(0, 0) (i.e. ỹ = S(x̃) with x̃ ∈ ω and ỹ ∈ Ξ)
such that

‖(x2, S(x2))− (x̃, ỹ)‖ ≤ (L+ 1)ν.

Hence it follows from (4.3) and the inclusion 2B ⊂ O that for ν sufficiently small

V ≥ lim inf
ν↘0

{ϕ(x̃, ỹ)− lν − l(L+ 1)ν; ỹ = S(x̃), x̃ ∈ ω, ỹ ∈ Ξ, (x̃, ỹ) ∈ O}.

Since (x̂, ŷ) is a local minimum of ϕ on O ∩GrS ∩ ω ×Ξ, the limes inferior above amounts
to ϕ(x̂, ŷ) and we are done.

On the basis of Lemma 3.4 we can now derive the following fuzzy optimality conditions
for (2.1).

Theorem 4.3. Let (x̂, ŷ) be a (local) solution of (2.1)) and assume that the mapping (4.1)
is calm at (0, 0, x̂, ŷ). Then, for any ε > 0, there exist points (x1, y1), (x2, y2), (x3, y3) ∈
(x̂, ŷ) + εB with y2 = S(x2), x3 ∈ ω, y3 ∈ Ξ and points p ∈ H̊1(Ω), η ∈ H−1(Ω), γ ∈
H̊1(Ω), ψ ∈ H−1(Ω) such that, with µ2 = −A y2 + x2 − a, one has

p ≥ 0 q.e. on I0(y2, µ2);

p = 0 µ2-a.e.on I+(µ2);

〈η, z〉 = 0 for all z ∈ H̊1(Ω) such that z = 0 q.e. on I(y2);

〈η, z〉 ≤ 0 for all z ∈ D such that 〈µ2, z〉 = 0;

γ ∈ N̂ω(x3);

ψ ∈ N̂Ξ(y3).

(4.4)

Moreover,
|ϕ(x1, y1)− ϕ(x̂, ŷ)| < ε

and ∥∥∥∥ ∇xϕ(x1, y1) + p+ γ
∇yϕ(x1, y1)−A ∗p+ η + ψ

∥∥∥∥ < ε. (4.5)

Proof. The calmness of M ensures by virtue of Lemma 4.1 the so-called local uniform lower
semicontinuity of the system (ϕ, δGrS, δω×Ξ) at (x̂, ŷ), cf. [3, Def.2.4]. The rest follows from
[3, Theorem 2.6] due to Lemmas 3.1, 3.2.

It is easy to show that the calmness condition of Theorem 4.2 is automatically fulfilled,
whenever one has to do with control constraints only.
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Proposition 4.4. Let Ξ = H̊1(Ω). Then M is calm at any feasible pair (x̄, ȳ).

Proof. Let us endow the carthesian product of the control and the state space with the sum
norm. Take any (x, y) ∈M(q1, q2) for an arbitrary (q1, q2) close to 0, and put x̃ = x−q1 ∈ ω.
Clearly,

dM(0,0)(x, y) ≤ ‖x− x̃‖+ ‖S(x)− S(x̃)‖ ≤ (l + 1)‖q1‖,

where l is the Lipschitz modulus of S, and we are done.

In presence of state constraints one can sometimes make use of the following statement
which is, similarly to Lemma 4.2 and Proposition 4.3, relevant for a general class of MPECs
with locally Lipschitz S.

Proposition 4.5. M is calm at (0, 0, x̄, ȳ) if and only if the multifunction M̃ [H̊1(Ω) →
H−1(Ω)], given by

M̃(q) := {x ∈ ω;S(x)− q ∈ Ξ},

is calm at (0, x̄).

Proof. Clearly, one has that

M(q1, q2) = {(x, S(x)); x ∈M1(q1, q2)},

where
M1 : (q1, q2) 7→ {x; x− q1 ∈ ω, S(x)− q2 ∈ Ξ}.

Since S is single-valued and Lipschitz, the calmness of M at (0, 0, x̄, ȳ) is equivalent to the
calmness of M1 at (0, 0, x̄). Further, it is clear that the calmness of M1 at (0, 0, x̄) implies

the calmness of M̃ at (0, x̄), and so it suffices to prove the reverse implication.
Assume by contradiction the existence of sequences

x(i) → x̄, (q
(i)
1 , q

(i)
2 ) → (0, 0) with x(i) ∈M1(q

(i)
1 , q

(i)
2 )

such that
dM1(0,0)(x

(i)) ≥ i(‖q(i)
1 ‖+ ‖q(i)

2 ‖) ∀ i.

Put x̃(i) := x(i) − q
(i)
1 and observe that, due to

S(x(i))− S(x̃(i)) + S(x̃(i))− q
(i)
2 ∈ Ξ,

one has S(x̃(i))− q(i) ∈ Ξ with q(i) = S(x̃(i))−S(x(i))+ q
(i)
2 . By the Lipschitz continuity of S

‖q(i)‖ ≤ l‖x̃(i) − x(i)‖+ ‖q(i)
2 ‖ = l‖q(i)

1 ‖+ ‖q(i)
2 ‖ ≤ max{l, 1}(‖q(i)

1 ‖+ ‖q(i)
2 ‖),

where l is the Lipschitz constant of S. It follows that

d
fM(0)(x̃

(i)) ≥ dM1(0,0)(x
(i))− ‖q(i)

1 ‖ ≥ (i− 1)(‖q(i)
1 ‖+ ‖q(i)

2 ‖) ≥ i− 1

max{l, 1}
‖q(i)‖,

whence contradiction with the calmness of M̃ at (0, x̄). The result has been established.
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For testing of calmness of infinite-dimensional multifunctions we refer to [13]. The next
step on our way to the M -stationarity conditions for (2.1) consists in the boundedness result
below. Before we state it, let us introduce the following important notion ([12, Def. 1.67
(ii)]).

We say that a multifunction F between Asplund spaces U and V is partially sequentially
normally compact (PSNC) at (ū, v̄) ∈ GrF , if for any sequences (uk, vk, u

∗
k, v

∗
k) satisfying

(uk, vk)
Gr F−→ (ū, v̄), u∗k ∈ D̂∗F (uk, vk)(v

∗
k), u

∗
k

∗
⇀ 0, v∗k → 0

one has u∗k → 0. It is proved in [12, Proposition 1.68] that F is PSNC at (ū, v̄), if it has the
Aubin property around ū, v̄.

Lemma 4.6. Assume that Ξ = H̊1(Ω) and consider a sequence εi ↓ 0, and the corresponding

sequences x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , x

(i)
3 , y

(i)
3 , p(i), η(i), γ(i) generated by Theorem 4.2. Then, among the

sequences of multipliers {(p(i), η(i))} and Fréchet normals {γ(i)} there is at least one, say
{p̄(i), η̄(i), γ̄(i)}, which is bounded.

Proof. Observe first that, as a contradiction to the above statement, it suffices to assume that
one always has ‖p(i)‖ → ∞. Indeed, if {p(i)} is bounded, then necessarily, both corresponding
sequences {η(i)} and {γ(i)} must be bounded as well by virtue of (4.5). So let us assume that

for all considered sequences x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , x

(i)
3 , y

(i)
3 , p(i), η(i), γ(i) it holds that ‖p(i)‖ → ∞.

By the local fuzzy sum rule there is at least one sequence, say
{(x̄(i)

1 , ȳ
(i)
1 , x̄

(i)
2 , ȳ

(i)
2 , x̄

(i)
3 , ȳ

(i)
3 , c(i), d(i))} such that c(i) ∈ N̂GrS(x̄

(i)
2 , ȳ

(i)
2 ) and

d(i) ∈ N̂ω×H̊1(Ω)(x̄
(i)
3 , ȳ

(i)
3 ), and

‖∇ϕ(x̄
(i)
1 , ȳ

(i)
1 ) + c(i) + d(i)‖ < εi.

It follows from the proof of Theorem 3.4 that for all i = 1, 2, . . . the elements c(i) admit the
representation (p̄(i),−A ∗p̄(i) + η̄(i)) and d(i) = (γ̄(i), 0) with γ̄(i) ∈ N̂ω(x̄

(i)
3 ). Consequently, it

holds that ∥∥∥∥∥∇yϕ(x̄
(i)
1 , ȳ

(i)
1 )

‖p̄(i)‖
−A ∗ p̄(i)

‖p̄(i)‖
+

η̄(i)

‖p̄(i)‖

∥∥∥∥∥ ↓ 0. (4.6)

Clearly, for all i, (
p̄(i)

‖p̄(i)‖
,−A ∗ p̄(i)

‖p̄(i)‖
+

η̄(i)

‖p̄(i)‖

)
∈ N̂GrS(x̄

(i)
2 , ȳ

(i)
2 ),

and

−A ∗ p̄(i)

‖p̄(i)‖
+

η̄(i)

‖p̄(i)‖
→ 0.

by virtue of (4.6). By the PSNC property of S at (x̂, ŷ), all weakly convergent subsequences
of the sequence of unit vectors ‖p̄(i)‖−1p̄(i) must converge to nonzero vectors. Let a be one
of these accumulation points. Then one has

a ∈ D∗S(x̂, ŷ)(0),

whence a contradiction with the Lipschitz continuity of S. It follows that {p̄(i)} is bounded
and the proof is complete.

After this preparatory work we are now able to recover the main result of [8].
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Theorem 4.7. Let Ω be the open interval (0, 1) ⊂ R and A = −4. Further assume
that (x̂, ŷ) is a (local) solution of the respective problem (2.1). Then there exist points p̂ ∈
H̊1(Ω), η̂ ∈ H−1(Ω) such that

0 ∈∇xϕ(x̂, ŷ) + p̂+Nω(x̂)

0 =∇yϕ(x̂, ŷ)−A ∗p̂+ η̂.
(4.7)

In addition, the multipliers p̂, η̂ fulfill the conditions

(i) 〈η, h〉 = 0 for all test functions h ∈ H̊1(0, 1) such that supph ⊂ L(ŷ);

(ii) p(s) = 0 for s ∈ I+(4ŷ + x̂− a);

(iii) for each open interval U ⊂ [0, 1] with p(s) < 0 for s ∈ U one has

〈η, h〉 = 0

for all test functions h ∈ H̊1(0, 1) such that supph ⊂ U ;

(iv) for each open interval U ⊂ [0, 1] with p(s) > 0 for s ∈ U one has

〈η, h〉 ≤ 0

for all test functions h ∈ D such that supph ⊂ U .

Proof. Put ε = εi ↓ 0 in Theorem 4.2. In this way we obtain sequences
(
x

(i)
1 , y

(i)
1

)
→

(x̂, ŷ),
(
x̂

(i)
2 , ŷ

(i)
2

)
GrS−→ (x̂, ŷ),

(
x

(i)
3 , y

(i)
3

)
−→ (x̂, ŷ) with x

(i)
3 ∈ ω, y

(i)
3 ∈ H̊1(Ω),

{
p(i)
}
,{

η(i)
}
,
{
γ(i)
}

satisfying all conditions of Theorem 4.2. By Lemma 4.6 the sequences
{
p(i)
}
,{

η(i)
}
,
{
γ(i)
}

possess weakly convergent subsequences. Our task is thus to find out conditions
which relate (x̂, ŷ) and the weak limits p̂, η̂, γ̂. It is easy to see that by definition certainly
γ̂ ∈ Nω(x̂). The first two of conditions (4.4) attain in fact the form

p(i) ≥ 0 on I0(y
(i)
2 , µ

(i)
2 )

p(i) = 0 on I+(µ
(i)
2 ),

because the functions p(i) are continuous. The third condition in (4.4) clearly implies condi-
tion (10) and the fourth condition is identical with condition (11) in [8, Proposition 4]. Thus
it suffices to apply Lemma 6 and Propositions 7-10 from [8] to arrive at above conditions
(i)–(iv). These results from [8] rely on the compact embedding of H̊1(0, 1) to C0(0, 1) which
is not valid for domains of higher dimension.

Condition (4.7) follows from (4.5) and we are done.

Remark 4.8. It is easy to see that in the case ω = H−1(Ω) the conditions of Theorem 4.7
are less sharp than the respective conditions of Theorem 3.4.

11



5 Two–dimensional case

When proving the limiting optimality conditions in Theorem 4.7, we strongly used the com-
pact embedding of H1(Ω) to C0(Ω) (endowed with the Chebyshev norm). It enabled us to
pass from a weak convergence of a sequence u(n) to u in H1(Ω) to the uniform convergence
of u(n) on Ω. In the case of an open domain Ω ⊂ Rd with d > 1 weak convergence of u(n) in
H1(Ω) implies strong convergence only in Lp(Ω) with p < 2d/(d − 2) for d > 2 and in any
Lp(Ω) for d = 2. Thus a (not relabelled) subsequence converges almost everywhere and ac-
cording to Jegorov’s theorem for any ε > 0 there is a subset M ⊂ Ω with Lebesgue measure
λ(M) < ε and u(n) → u uniformly on Ω \M . However, estimates of Lebesgue measure of
M are too weak to work with measures in H−1(Ω). We would need an analogous assertion
with the estimates in terms of capacity instead of Lebesgue measure. Unfortunately, such an
assertion does not hold, too. A counterexample was suggested by E. De Giorgi and proposed
by J. Frehse for the dimension d ≥ 3 in [6], [7]. It seems that an example in space dimension
2 was published in a research report without access to a copy. For this reason we present here
another example which can be very similar to J. Frehse’s one. In the example we construct
a sequence v(n) ⇀ 0 in H1(Ω) such that cap

{
v(n) = 1

}
is bounded away from zero.

Step 1.
Let R > ρ be positive real numbers, s ∈ R2. Denote by |x| the Euclidean norm of x.

Besides B(s, ρ) = {x ∈ R2; |x − s| < ρ}, we define S(s, ρ) = {x ∈ R2; |x − s| = ρ} and
Q(s, ρ) = {x = [x1, x2] ∈ R2; max{|x1 − s1|, |x2 − s2|} ≤ ρ}.

In fact, infimum in the definition of capacity is attained when taking u = 1 on B(s, ρ) and
u minimizing Dirichlet integral on B(s, R) \ B(s, ρ) with boundary values u = 1 on S(s, ρ)
and u = 0 on S(s, R). The corresponding solution u is radially symmetric with respect to s.
For given R, ρ ∈ R+, s ∈ R2 consider

uR,ρ,s(x) =


1 on B(s, ρ),

ln R
|x−s|

ln R
ρ

on B(s, R) \ B(s, ρ),

0 on R2 \ B(s, R).

Then
∫

R2 |∇u|2 =
∫

B(s,R)
|∇u|2 = 2π(ln R

ρ
)−1.

Step 2.
Assume that a compact set K lies strictly inside the unit disc B. Then it holds (see [9,

Chapter II, paragraph 4.,p.168], )

cap(K) = max{µ(1)},

where µ(1) =
∫

K
1dµ(y) is the measure of the support of µ and maximum is taken over all

nonnegative measures µ supported in K for which

Uµ(x) =

∫
K

ln
1

|x− y|
dµ(y) ≤ 1

on R2. For K = S(s, ρ) and µ the measure obtained by the uniform distribution of a unit
mass over S(s, ρ) we have
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µ(f) =
1

2πρ

∫
S(s,ρ)

f(x)dS,

Uµ(x) =
1

2πρ

∫
S(s,ρ)

ln
1

|x− y|
dS(y),

where the integrals over the sphere are the surface integrals of the first kind. In a rather
cumbersome calculation of Uµ, the differentiation in the parameter a for the the necessary
evaluation of the integral ∫ π

−π

ln(1 + a cosα)dα

helps. It holds

Uµ(x) =


ln

1

|x− s|
, for |x− s| ≥ ρ,

ln
1

ρ
, for |x− s| < ρ.

Step 3.
Denote 0 ≡ [0, 0], Q = Q(0, 1/2) ⊂⊂ B. For even n ∈ N, k, j ∈ No set R = 1/4n; sk,j =

[k/2n, j/2n], Bk,j = B(sk,j, 1/4n) for k, j ∈ {−n, ..., n}. Positive ρ ∈ (0, R) is defined in
(5.1) below. We simplify the notation by writing un,k,j instead of uR,ρ,s for above described
R, ρ, s. Define v(n) =

∑n
k,j=−n un,k,j.

Then for a (not relabelled) subsequence it holds

1.
(
v(n)
)

is bounded in H1(B) and in L∞(B),

2. v(n) ⇀ 0 in H1(B),

3. There is an ε > 0 such that the capacity of

{x ∈ B; v(n)(x) > ε} = ∪j,k∈{−n,...,n}B(sk,j, R
1−ερε)

is bounded from below by a positive constant that does not depend on n.

Proof:
1. It is obvious that ||v(n)||L∞(B) = 1, ||v(n)||L2(B) ≤ 1. Moreover,

∇un,k,j(x) =


0 on B(sk,j, ρ) ∪ (R2 \ B(sk,j, R))

− 2π

ln R
ρ

x− sk,j

|x− sk,j|2
on B(sk,j, R) \ B(sk,j, ρ),

and thus

||∇v(n)||L2(B) = 2π
(n+ 1)2

ln R
ρ

= 2π

for

ln
R

ρ
= (n+ 1)2, i.e. for ρ =

1

4n
e−(n+1)2 . (5.1)

2. To get the weak convergence of gradients of v(n) to zero in L2(B) it is enough to show
that ∫

B

∂v(n)

∂xi

ψdx→ 0
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for i = 1, 2 and ψ a characteristic function of a rectangle [a, b] × [c, d] ⊂ B (because linear
hull of such functions is dense in L2(B)). In case Bjk ⊂ [a, b]× [c, d] it holds∫

Bjk

∂un,k,j

∂xi

dx = 0

as un,k,j = 0 on ∂Bjk. In case Bjk ∩ ∂([a, b]× [c, d]) 6= ∅ we have∫
Bjk∩([a,b]×[c,d])

|∇un,k,j| ≤

(
2π2R

(
ln
R

ρ

)−1
)1/2

.

As there are only 2(2n+ 1)(b− a+ d− c) balls Bj,k with this property we get that∫
B
|∇v(n)(x)|ψ(x)dx ≤ 2(2n+ 1)(b− a+ d− c)2π2

(
4n ln

R

ρ

)−1

→ 0

3. Denote mn = 1
(n+1)2

,

U
(n)
jk (x) =

mn

2πρ

∫
S(sjk,ρ)

ln
1

|x− y|
dS(y),

i.e.

U
(n)
jk (x) =


mn ln

1

ρ
for |x− sjk| < ρ

mn ln
1

|x− sjk|
for |x− sjk| ≥ ρ,

the potential corresponding to the measure µn obtained by the uniform distribution of a
mass mn over the sphere S(sjk, ρ) and, finally, U (n)(x) =

∑n
j,k=−n U

(n)
jk (x).

Then for all x ∈ Q([j0, k0], R) and sjk 6= sj0k0 we have |x−sjk| ≥ 1
4n

max{|j−j0|, |k−k0|}
and

U (n)(x) ≤mn

ln
1

ρ
+

n∑
max(|j−j0|,|k−k0|)=1

ln
1

|x− sjk|


≤mn

ln
1

ρ
+

n∑
L=1

( ∑
max(|j−j0|,|k−k0|)=L

ln
4n

max(|j − j0|, |k − k0|

)
≤mn

(
ln

1

ρ
+

n∑
L=1

8L ln 4n/L

)
.

Moreover, the monotonicity of f(x) = x. lnx on [1,∞) implies that

n+1∑
L=1

L lnL ≥
∫ n

1

x lnxdx ≥ n2

2
(lnn− 1/2),

hence

U (n)(x) ≤ an ≡
(

1 +
ln(4n)

(n+ 1)2
+ 8

(
n ln 4n

2(n+ 1)
− n2

2(n+ 1)2
(lnn− 1/2)− ln(n+ 1)

(n+ 1)

))
.

As the squares Q([j0, k0], R) cover Q the estimate holds on Q and it is easy to realize
that it holds on R2. Denote by B the upper bound of the (bounded) sequence an. Then
1
B

(n) is an admissible potential in the definition of capacity of the set K = ∪k,j∈{−n,...,n}Bk,j

and cap(K) ≥ 1
B
> 0 for the positive constant B that does not depend on n.
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6 Conclusion

The counterexample of the preceding section strikingly shows the importance of the compact
imbedding of the used state space in C0(Ω) in the derivation of limiting optimality conditions.
So, to establish such conditions, it will be essential to find a different function-space setting
for (2.1). Let X and Y be a control and state space, respectively, satisfying the following
requirements:

1. Y is compactly imbedded into C0(Ω);

2. the elements of ND are signed Radon measures.

In this way we may loose other two important properties: the directional differentiability of
S and the surjectivity of the linear mapping from X × Y to Y × Y ∗, defined by 0 Id

IY ∗ A

 ,

where IY ∗ means the canonical injection of X into Y ∗. Observe that in the setting of
[8] and this paper X = Y ∗ so that the operator IY ∗ is indeed surjective. The possible
lack of directional differentiability can be overcome by the technique from [8] and also the
surjectivity is not indispensable, cf. [12], [13]. So we will try to follow this way in our next
research.
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